
1070. Fill the line

n segments are painted on the line. The coordinates of the left and right ends of

each segment li and ri are known. Find the length of the colored part of the line.

Input. The first line contains the number n (1 ≤ n ≤ 15000), the following n lines

contains the pair of integers li and ri (-109 ≤ li ≤ ri ≤ 109).

Output. Print the length of the colored part of the line.

Sample input Sample output
5

6 8

1 2

0 3

7 9

2 4

7

Algorithm analysis

Store the points – the ends of n segments into the array v, marking which end (left

or right) they are. Then sort 2 * n points by the abscissa v[i]. Now move from left to

right along the intervals (v[i], v[i + 1]) between the points (we’ll organize the movement

of the sweeping line). Keep the variable depth equal to the number of segments

covering the interval (v[i], v[i + 1]). Initially, set it to 0. The value depth will be

increased by 1 if the point is the start of segment, and decreased by 1 if the point is the

end of segment.

The length of the colored part of the straight line equals to the sum of the lengths

of the intervals xi+1 – xi, where depth is not zero.

Example

Consider a set of the following line segments:

0 1 2 3 4 5 6 7 8 9

1 2 2 1 0 1 2 1depth

The answer is the sum of the lengths of the intervals xi+1 – xi, where depth is not

zero.

853. Sereja and Array

Sereja has got an array, consisting of n integers a1, a2, ..., an. Sereja is an active

boy, so he is now going to complete m operations. Each operation will have one of the

three forms:

 Make vi-th array element equal to xi. In other words, perform the assignment

avi = xi.

 Increase each array element by yi. In other words, perform n assignments ai

 = ai +  yi (1 ≤ i ≤ n).

 Take a piece of paper and write out the qi-th array element. That is, the

element aqi.

Help Sereja, complete all his operations.

Input. The first line contains integers n, m (1 ≤ n, m ≤ 105). The second line

contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109) – the original array.

Next m lines describe operations, the i-th line describes the i-th operation. The first

number in the i-th line is integer ti (1 ≤  ti  ≤ 3), that represents the operation type. If ti

 = 1, then it is followed by two integers vi and xi (1 ≤  vi  ≤ n, 1 ≤  xi  ≤ 109). If ti  = 2, then

it is followed by integer yi (1 ≤  yi  ≤ 104). And if ti  = 3, then it is followed by integer qi

(1 ≤  qi ≤ n).

Output. For each third type operation print value aqi. Print the values in the order,

in which the corresponding queries follow in the input.

Sample input 1 Sample output 1
5 6

1 2 3 4 5

3 1

2 10

1 1 5

3 1

2 10

3 1

1

5

15

Sample input 2 Sample output 2
10 11

1 2 3 4 5 6 7 8 9 10

3 2

3 9

2 10

3 1

3 10

1 1 10

2 10

2 10

2

9

11

20

30

40

39

3 1

3 10

3 9

Algorithm analysis

Read the input array a. Create a variable add, initialize it to zero. When performing

an operation of the second type (increasing each element of the array by yi), add add + =

yi. Thus, in the absence of operations of the first type (assignments avi = xi), the final

state of the element ai will be equal to the initial state of ai plus add. Then, to preserve

the last property in the case of the first operation, we must assign avi = xi – add.

Example

Let’s look at the first example. Let ai be the state of the array in memory, ai’ be the

real state of the array. Initial state of the array:

1 2 3 4 5

add = 0

memory

a 1 2 3 4 5

real array

a’

Since ai’ = ai + add, but initially add = 0, then ai’ = ai. That is, initially physically

each element of the array equals to itself.

Add 10 to all the numbers in the array, add = add + 10 = 10. The following

relation holds: ai’ = ai + add.

1 2 3 4 5

add = 10

memory

a 11 12 13 14 15

real array

a’

The next query: a1’ = 5. Physically you should make the assignment

a1 = 5 – add,

after which the array will take the form:

-5 2 3 4 5

add = 10

memory

a 5 12 13 14 15

real array

a’

Next query is to print the first element. We get a1’ = a1 + add = -5 + 10 = 5.

Again add 10 to all the numbers of array: add = add + 10 = 20.

-5 2 3 4 5

add = 20

memory

a 15 22 23 24 25

real array

a’

First element equals to a1’ = a1 + add = -5 + 20 = 15.

5071. Roy and Coin Boxes

Roy has n coin boxes numbered from 1 to n. Every day he selects two indices [l, r]

and adds 1 coin to each coin box starting from l to r (both inclusive). He does this for m

number of days.

After m days, Roy has a query: How many coin boxes have at least x coins. He has

q such queries.

Input. First line contains number of coin boxes n (1 ≤ n ≤ 106). Second line

contains number of days m (1 ≤ m ≤ 106). Each of the next m lines consists of two space

separated integers l and r (1 ≤ l ≤ r ≤ n). Followed number is the number of queries q (1

≤ q ≤ 106). Each of next q lines contain a single integer x (1 ≤ x ≤ n).

Output. For each query output the result in a new line.

Sample input Sample output
7

4

1 3

2 5

1 2

5 6

4

1

7

4

2

6

0

0

4

Algorithm analysis

Let’s create an array – counter cnt. For each request [l, r], we’ll perform two

operations: cnt[l]++ and cnt[r + 1]--. Thus, the partial sum

i

j

jcnt
1

][equals to the

number of coins in the i-th coin box.

The number of days that Roy performs actions is no more than 106. Each day he

puts no more than one coin in each coin box. After completing all the actions, each coin

box will contain no more than 106 coins. Create an array of coins of size 106 and assgn

to coins[i] the number of coin boxes with i coins. To do this, for each partial sum sum =

i

j

jcnt
1

][execute coins[sum]++.

Now let’s find the number of coin boxes that contain at least x coins. To do this, in

the array coins, compute its partial sums from right to left (that is, from the end). Then

the number of coin boxes that contain at least x coins equals to coins[x].

Example

1 2 3 4 5 6 7

[1; 3]

[2; 5]
[1; 2]

[5; 6]

2 1 -1 -1 1 -1 -1cnt

2 3 2 1 2 1 0
partial

sums

We get the following distribution of coins by coin boxes:

1 2 3 4 5 6 7

2 2
3

2
1 1

The number of coin boxes with the sum of s. Partial sums (counted from right to

left) contain the number of coin boxes with at least s coins.

0 1 2 3s

1 2 3 1coin[s]

7 6 4 1
partial

sums

There is one coin box with sum 0 (coin box number 7), two coin boxes with sum 1

(coin boxes with numbers 4 and 6), three coin boxes with sum 2 (coin boxes with

numbers 1, 3 and 5), one coin box with sum 3 (coin box number 2).

After computing the partial sums of the coins array, it can be stated, for example,

that there are 6 coin boxes contain at least 1 coin. Or that there are 4 coin boxes contain

at least 2 coins.

1228. Add All

The cost of adding two numbers equals to their sum. For example to add 1 and 10

cost 11. The cost of addition 1 and 2 is 3. We can add numbers in several ways:

 1 + 2 = 3 (cost = 3), 3 + 3 = 6 (cost = 6), Total = 9

 1 + 3 = 4 (cost = 4), 2 + 4 = 6 (cost = 6), Total = 10

 2 + 3 = 5 (cost = 5), 1 + 5 = 6 (cost = 6), Total = 11

We hope you understood the task. You must add all numbers so that the total cost

of summation will be the smallest.

1 2 3

3

6
3

6

9

1 2 3

64
6

10

4

321

5

6
5

6

11Total cost Total cost Total cost

Input. First line contains positive integer n (2 ≤ n ≤ 105). Second line contains n

nonnegative integers, each no more than 105.

Output. Print the minimum total cost of summation.

Sample input Sample output
4

1 2 3 4

19

Algorithm analysis

Add the smallest two numbers each time. Then the total cost of summation for all n

integers will be the minimum. Since numbers can be repeated, will store them in a

multiset.

Example

To minimize the cost of addition, add the numbers in the following order:

1. Add 1 and 2, sum is 3. Cost of addition is 3.

2. Add 3 and 3, sum is 6. Cost of addition is 6.

3. Add 4 and 6, sum is 10. Cost of addition is 10.

1 2 3 4 3 3 4

3 6

4 6

10

Total cost of summation is 3 + 6 + 10 = 19.

4359. Sweets for mushrooms

It seems strange, but mushrooms like soda. Moreover, Michael likes to make

experiments with it. Each kind of soda has it's own level of sweetness. Michael

has n containers with soda of different levels. If Michael mix two containers with

levels x and y, instead of these two he will get soda with level 2 * min(x, y).

Help Michael to get soda with the highest possible level of sweetness.

Input. The first line contains the number of containers n (1 ≤ n ≤ 106). The second

line contains n integers: the level of sweetness xi (-109 ≤ xi ≤ 109).

Output. Print the highest possible level of sweetness that can be obtained by

mixing some of the available sodas.

Sample input Sample output
3

1 3 6

6

Algorithm analysis

Add all containers to the multiset (containers with the same sweetness level may

appear during the mixing process). It makes sense to mix water with sweets x and y if

the level of resulting sweetness is reater than max(x, y).

Consider two waters with the lowest levels of sweetness x and y.

 If 2x ≤ y, then after mixing them you get water with a level of sweetness 2 *

min(x, y) = 2x, which is not more than y. In this case, there is no point in

mixing: we will remove the sweetness x from the multiset and the

corresponding capacity will not be considered further.

 If 2x > y, then after mixing them you get water with a level of sweetness 2 *

min(x, y) = 2x, which is more than y. Remove x and y sweets from the

multiset and add sweets 2x.

Perform the described operation with the two smallest sweets x and y while the

multiset contains more than one element.

3004. Queue

In civilized countries k ticket offices are working at the train station, but the queue

to them is just one. The service works as follows. Initially, when all the ticket offices

are free, the first k people from the queue go to the offices. The others are waiting their

turn. As soon as someone is served and the corresponding office becomes free, the next

person in the queue comes to this office. This continues until all the people will be

served.

Find the time to serve all the clients.

Input. The first line contains two integers: the queue size n and the number of

ticket offices k (1 ≤ n ≤ 105, 1 ≤ k ≤ 104). n positive integers are given in the second line.

The i-th number gives the time ti (1 ≤ ti ≤ 105) to serve the i-th client in the queue.

Output. Print one integer – the time to serve all the people in the queue.

Sample input Sample output
7 3

1 2 3 4 5 3 1

7

Algorithm analysis

Lets simulate the process of selling tickets using the multiset s. Bring the first k

people to free cash desks and store their service time in the multiset. During further

processing, the multiset will contain k elements. Each value in multiset reflects the time

moment when the corresponding cash register will become free and the next person will

be able to approach it. Obviously, each time a new person must come to the cash

register for which this time is minimal. The time of the last served client will be the

desired one.

Example

Consider the sample given. Put k = 3 first elements to the heap.

1 2 3

1

2

3

Then, at each iteration, we take the next element (the next person from the queue)

and put it instead of the smallest one (we put the person to the ticket office that will be

released earlier). We put to the queue the time at which this new person leaves the ticket

office. Next to each figure the numbers in the heap are given.

1

2

3

4 1

2

3

4

5

1

2

3

4

5

3

1

2

3

4

5

3

1

2 3 5 3 5 7 5 6 7

6 6 7

